Friday 3 November 2017

Moving Average Budget


Ein einfacher gleitender Durchschnitt (SMA) Ein einfacher gleitender Durchschnitt (SMA) ist ein arithmetischer gleitender Durchschnitt, der berechnet wird, indem der Schlusskurs der Sicherheit für eine Anzahl von Zeitperioden addiert wird und dann diese Gesamtzahl durch die Anzahl der Zeit dividiert wird Zeiträume. Wie in der obigen Grafik gezeigt, beobachten viele Händler kurzfristige Durchschnittswerte, um längerfristige Durchschnittswerte zu überschreiten, um den Beginn eines Aufwärtstrends zu signalisieren. Kurzzeitmittel können als Stufen der Unterstützung zu handeln, wenn der Preis erlebt ein Pullback. Laden des Players. BREAKING DOWN Einfacher gleitender Durchschnitt - SMA Ein einfacher gleitender Durchschnitt ist anpassbar, indem er für eine unterschiedliche Anzahl von Zeitperioden berechnet werden kann, indem einfach der Schlusskurs des Wertpapiers für eine Anzahl von Zeitperioden addiert wird und dann diese Summe durch die Zahl dividiert wird Von Zeiträumen, die den durchschnittlichen Preis der Sicherheit über den Zeitraum gibt. Ein einfacher gleitender Durchschnitt glättet die Volatilität und macht es einfacher, die Preisentwicklung eines Wertpapiers zu sehen. Wenn der einfache gleitende Durchschnitt nach oben zeigt, bedeutet dies, dass der Sicherheitspreis steigt. Wenn es nach unten zeigt, bedeutet dies, dass der Sicherheitspreis sinkt. Je länger der Zeitrahmen für den gleitenden Durchschnitt, desto glatter der einfache gleitende Durchschnitt. Ein kürzerer bewegter Durchschnitt ist volatiler, aber sein Messwert ist näher an den Quelldaten. Analytische Bedeutung Gleitende Durchschnitte sind ein wichtiges analytisches Werkzeug verwendet, um aktuelle Preistrends zu identifizieren und das Potenzial für eine Veränderung in einem etablierten Trend. Die einfachste Form der Verwendung eines einfachen gleitenden Durchschnitt in der Analyse ist es, schnell zu identifizieren, ob eine Sicherheit in einem Aufwärtstrend oder Abwärtstrend ist. Ein weiteres populäres, wenn auch etwas komplexeres analytisches Werkzeug, besteht darin, ein Paar einfacher gleitender Durchschnitte mit jeweils unterschiedlichen Zeitrahmen zu vergleichen. Liegt ein kürzerer einfacher gleitender Durchschnitt über einem längerfristigen Durchschnitt, wird ein Aufwärtstrend erwartet. Auf der anderen Seite signalisiert ein langfristiger Durchschnitt über einem kürzerfristigen Durchschnitt eine Abwärtsbewegung im Trend. Beliebte Trading-Muster Zwei beliebte Trading-Muster, die einfache gleitende Durchschnitte verwenden, schließen das Todeskreuz und ein goldenes Kreuz ein. Ein Todeskreuz tritt auf, wenn die 50-tägige einfache gleitende Durchschnitt unter dem 200-Tage gleitenden Durchschnitt kreuzt. Dies wird als bärisch signalisiert, dass weitere Verluste auf Lager sind. Das goldene Kreuz tritt auf, wenn ein kurzfristiger gleitender Durchschnitt über einen langfristigen gleitenden Durchschnitt bricht. Verstärkt durch hohe Handelsvolumina, kann dies signalisieren, weitere Gewinne sind in store. A Prognose Berechnung Beispiele A.1 Prognose Kalkulationsmethoden Zwölf Methoden der Berechnung von Prognosen stehen zur Verfügung. Die meisten dieser Methoden bieten eine eingeschränkte Benutzerkontrolle. Beispielsweise könnte das Gewicht, das auf die jüngsten historischen Daten oder den Datumsbereich der in den Berechnungen verwendeten historischen Daten gesetzt wurde, spezifiziert werden. Die folgenden Beispiele zeigen das Berechnungsverfahren für jede der verfügbaren Prognosemethoden bei einem identischen Satz von historischen Daten. Die folgenden Beispiele verwenden dieselben Verkaufsdaten für 2004 und 2005, um eine Verkaufsprognose von 2006 zu erstellen. Zusätzlich zur Prognoserechnung enthält jedes Beispiel eine simulierte Prognose von 2005 für eine dreimonatige Halteperiode (Verarbeitungsoption 19 3), die dann für Prozent der Genauigkeit und der mittleren Absolutabweichung (tatsächlicher Umsatz gegenüber simulierter Prognose) verwendet wird. A.2 Kriterien für die Bewertung der Prognoseleistung Abhängig von der Auswahl der Verarbeitungsoptionen und den in den Verkaufsdaten vorhandenen Trends und Mustern werden einige Prognosemethoden für einen gegebenen historischen Datensatz besser abschneiden als andere. Eine für ein Produkt geeignete Prognosemethode ist möglicherweise nicht für ein anderes Produkt geeignet. Es ist auch unwahrscheinlich, dass eine Prognosemethode, die in einem Stadium des Produktlebenszyklus gute Ergebnisse liefert, über den gesamten Lebenszyklus hinweg angemessen bleibt. Sie können zwischen zwei Methoden wählen, um die aktuelle Leistung der Prognosemethoden zu bewerten. Diese sind mittlere absolute Abweichung (MAD) und Prozent der Genauigkeit (POA). Beide dieser Leistungsbewertungsverfahren erfordern historische Verkaufsdaten für einen vom Benutzer angegebenen Zeitraum. Dieser Zeitraum wird als Halteperiode oder Perioden am besten geeignet (PBF) bezeichnet. Die Daten in diesem Zeitraum dienen als Grundlage für die Empfehlung, welche der Prognosemethoden für die nächste Prognoseprojektion verwendet werden sollen. Diese Empfehlung ist spezifisch für jedes Produkt und kann von einer Prognosegeneration zur nächsten wechseln. Die beiden prognostizierten Methoden der Leistungsbewertung werden in den Seiten nach den Beispielen der zwölf Prognosemethoden vorgestellt. A.3 Methode 1 - Festgelegter Prozentsatz über Letztes Jahr Diese Methode multipliziert Verkaufsdaten des Vorjahres mit einem benutzerdefinierten Faktor, zum Beispiel 1,10 für eine 10-Erhöhung oder 0,97 für eine 3-Abnahme. Erforderliche Verkaufsgeschichte: Ein Jahr für die Berechnung der Prognose plus die benutzerdefinierte Anzahl von Zeiträumen für die Bewertung der Prognoseperformance (Verarbeitungsoption 19). A.4.1 Prognoserechnung Berechnung des Umsatzverlaufs für die Berechnung des Wachstumsfaktors (Verarbeitungsoption 2a) 3 in diesem Beispiel. Summe den letzten drei Monaten des Jahres 2005: 114 119 137 370 Summe die gleichen drei Monate für das Vorjahr: 123 139 133 395 Der berechnete Faktor 370/395 0,9367 Berechnen Sie die Prognosen: Januar 2005 Umsatz 128 0,9367 119,8036 oder etwa 120 Februar 2005 Umsatz 117 0.9367 109.5939 oder etwa 110 März 2005 Umsatz 115 0,9367 107,7205 oder etwa 108 A.4.2 Simulierte Prognose Berechnung Summe die drei Monate des Jahres 2005 vor Periode holdout (Juli, August, September): 129 140 131 400 Summe die gleichen 3 Monate für das Vorjahr: 141 128 118 387 der berechnete Faktor 400/387 1,033591731 berechnen simulierte Prognose: Oktober 2004 Umsatz 123 1,033591731 127,13178 November 2004 Umsatz 139 1,033591731 143,66925 Dezember 2004 Umsatz 133 1,033591731 137,4677 A.4.3 Prozent der Genauigkeit Berechnung POA ( 143,66925 137,4677 127,13178) / (114 119 137) 100 408,26873 / 370 100 110,3429 A.4.4 absolute Abweichung Berechnung MAD Mittelwert (127,13178-114 143,66925-119 137.4677- 137) / 3 (13,13178 24,66925 0,4677) / 3 12,75624 A.5 Methode 3 - Letztes Jahr zu diesem Jahr Mit dieser Methode werden die Verkaufsdaten des Vorjahres auf das nächste Jahr kopiert. Erforderliche Verkaufsgeschichte: Ein Jahr für die Berechnung der Prognose plus die Anzahl der für die Bewertung der Prognoseperformance angegebenen Zeiträume (Verarbeitungsoption 19). A.6.1 Prognoseberechnung Anzahl der Perioden, die in den Durchschnitt einzubeziehen sind (Verarbeitungsoption 4a) 3 in diesem Beispiel Für jeden Monat der Prognose durchschnittlich die letzten drei Monate Daten. Januar Prognose: 114 119 137 370, 370/3 123.333 oder 123. Februar Prognose: 119 137 123 379, 379/3 126.333 oder 126 März Prognose: 137 123 126 379, 386/3 128.667 oder 129 A.6.2 Simulation der voraussichtlichen Berechnung Oktober 2005 (131 114 119) / 3 121,333 A.6.3 Prozentsatz der Genauigkeitsberechnung (133,333 128,333 121,333) / (114 119 137) Umsatz (129 140 131) / 3 133,333 November 2005 Umsatz (140 131 114) / 3 128,333 Dezember 2005 100 103.513 A.6.4 Mittlere Absolutabweichung MAD (133.3333 - 114 128.3333 - 119 121.3333 - 137) / 3 14.7777 A.7 Methode 5 - Lineare Approximation Die lineare Approximation berechnet einen Trend basierend auf zwei Verkaufsverlaufsdatenpunkten. Diese beiden Punkte definieren eine gerade Linie, die in die Zukunft projiziert wird. Verwenden Sie diese Methode mit Vorsicht, da Langstreckenvorhersagen durch kleine Änderungen an nur zwei Datenpunkten genutzt werden. Erforderliche Verkaufsgeschichte: Anzahl der in die Regression einzubeziehenden Perioden (Verarbeitungsoption 5a) plus 1 plus Anzahl der Zeiträume für die Bewertung der Prognoseperformance (Verarbeitungsoption 19). A.8.1 Prognose Berechnung für jeden Monat der Prognose Anzahl der Perioden in Regression (Verarbeitungsoption 6a) in diesem Beispiel 3 enthalten, fügen Sie die Zunahme oder Abnahme während der angegebenen Zeiträume vor Periode holdout der Vorperiode. Durchschnitt der letzten drei Monate (114 119 137) / 3 123.3333 Zusammenfassung der letzten drei Monate mit berücksichtigtem Gewicht (114 1) (119 2) (137 3) 763 Differenz zwischen den Werten 763 - 123.3333 (1 2 3) 23 Verhältnis (12 22 32) - 2 3 14 - 12 2 Wert1 Differenz / Verhältnis 23/2 11,5 Wert2 Durchschnitt - Wert1 Verhältnis 123,3333 - 11,5 2 100,333 Prognose (1 n) Wert1 Wert2 4 11,5 100,333 146,333 oder 146 Prognose 5 11,5 100,333 157,8333 oder 158 Prognose 6 11.5 100.3333 169.3333 oder 169 A.8.2 Simulierte Prognoseberechnung Oktober 2004 Umsatz: Durchschnitt der vorangegangenen drei Monate (129 140 131) / 3 133.3333 Zusammenfassung der letzten drei Monate mit gewichtetem Gewicht (129 1) (140 2) (131 3) 802 Differenz zwischen den Werten 802 - 133,333 (1 2 3) 2 Verhältnis (12 22 32) - 2 3 14 - 12 2 Wert1 Differenz / Verhältnis 2/2 1 Wert2 Durchschnitt - Wert1 Verhältnis 133,333 - 1 2 131,333 Prognose (1 N) Wert1 Wert2 4 1 131.3333 135.3333 November 2004 Umsatz Durchschnitt der vorangegangenen drei Monate (140 131 114) / 3 128.3333 Zusammenfassung der vorangegangenen drei Monate mit betrachtetem Gewicht (140 1) (131 2) (114 3) 744 Differenz zwischen den (-12.9999) 2 154.3333 Prognose 4 -12.9999 154.3333 102.3333 Dezember 2004 Umsatz Durchschnitt der vergangenen drei Monate (-12.9999) 2 154.3333 (1 2 3) -25.9999 Wert1 Differenz / Verhältnis -25.9999 / 2 -12.9999 Wert2 Durchschnitt - 131 114 119) / 3 121.3333 Zusammenfassung der letzten drei Monate mit betrachtetem Gewicht (131 1) (114 2) (119 3) 716 Differenz zwischen den Werten 716 - 121,333 (1 2 3) -11,9999 Wert1 Differenz / Verhältnis -11,9999 / 2 -5,9999 Wert2 Durchschnittswert1-Verhältnis 121,3333 - (-5,9999) 2 133,333 Prognose 4 (-5,9999) 133,333 109,333 A.8,3 Prozent der Genauigkeitsberechnung (135,33 102,33 109,33) / (114 119 137) 100 93,78 A.8.4 Mittelwert Absolut Abweichungsberechnung MAD (135.33 - 114 102.33 - 119 109.33 - 137) / 3 21.88 A.9 Methode 7 - Zweite Grad Approximation Lineare Regression bestimmt Werte für a und b in der Prognoseformel Y a bX mit dem Ziel, Die Verkaufsverlaufsdaten. Zweite Grad Approximation ist ähnlich. Dieses Verfahren ermittelt jedoch Werte für a, b und c in der Prognoseformel Y a bX cX2 mit dem Ziel, eine Kurve an die Verkaufsverlaufsdaten anzupassen. Dieses Verfahren kann nützlich sein, wenn sich ein Produkt im Übergang zwischen den Stufen eines Lebenszyklus befindet. Wenn sich beispielsweise ein neues Produkt von der Einführung in die Wachstumsphase bewegt, kann sich die Umsatzentwicklung beschleunigen. Wegen des Termes der zweiten Ordnung kann die Prognose schnell an die Unendlichkeit heranreichen oder auf Null fallen (abhängig davon, ob der Koeffizient c positiv oder negativ ist). Daher ist dieses Verfahren nur kurzfristig nutzbar. Prognosedaten: Die Formeln finden a, b und c, um eine Kurve auf genau drei Punkte zu platzieren. Sie geben n in der Verarbeitungsoption 7a an, die Anzahl der Zeitperioden der Daten, die sich in jedem der drei Punkte ansammeln. In diesem Beispiel n 3. Daher werden die tatsächlichen Verkaufsdaten für April bis Juni in den ersten Punkt Q1 zusammengefasst. Juli bis September werden addiert, um Q2 zu schaffen, und Oktober bis Dezember Summe zu Q3. Die Kurve wird an die drei Werte Q1, Q2 und Q3 angepasst. Erforderliche Verkaufsgeschichte: 3 n Perioden für die Berechnung der Prognose plus die Anzahl der Zeiträume für die Bewertung der Prognoseperformance (PBF) erforderlich. Anzahl der einzubeziehenden Perioden (Verarbeitungsoption 7a) 3 in diesem Beispiel Die vorherigen (3 n) Monate in dreimonatigen Blöcken verwenden: Q1 (Apr - Jun) 125 122 137 384 Q2 (Jul - Sep) 129 140 131 400 Q3 Der nächste Schritt besteht darin, die drei Koeffizienten a, b und c zu berechnen, die in der Prognoseformel Y a bX cX2 (1) Q1 a bX cX2 (mit X 1) abc (2) Q2 verwendet werden (1) aus Gleichung (2) subtrahieren Sie die Gleichung (1) aus der Gleichung (1) aus der Gleichung (2) (3) (3) Q3 a 3 (Q2 - Q1) - 3c c Schliesslich setzen wir diese Gleichungen für a und b in die Gleichung (3) ein Gleichung (1) Q3 - 3 (Q2 - Q1) (q2 - Q1) - 3c c Q1 c (Q3 - Q2) (Q1 - Q2) / 2 Das Zweite-Grad-Approximationsverfahren berechnet a, b und c wie folgt: Q2 - Q2) (Q1 - Q2) / 2 (370 - 400) (384 - 400) / 2 - 23 b (Q2 - Q1) - 3c (400 - 384) - (3 -23) 85 Y a bX cX2 322 85X (-23) X2 Januar bis März (X4): (322 340 - 368) / 3 294/3 98 für den Zeitraum April bis Juni (X5): (322 425 - 575) / 3 57.333 oder 57 für den Zeitraum Juli bis September (X6): (322 510 - 828) / 3 1,33 oder 1 für Oktober bis Dezember (X7) (322 595 - 1127) / 3 -70 A.9.2 Simulierte Prognoseberechnung Oktober, November und Dezember 2004 Umsatz: Q1 (Jan - März) 360 Q2 (Apr - Jun) 384 Q3 (Jul - Sep) 400 a 400 - 3 (384 - 360) 328 C (400 - 384) (360 - 384) / 2 -4 b (384 - 360) - 3 (-4) 36 328 36 4 (-4) 16/3 136 A.9.3 Prozent der Genauigkeitsberechnung POA (136 136 13.6) A.10 Methode 8 - Flexible Methode Die flexible Methode (Prozentwert über n Monate vor) Ist vergleichbar mit Methode 1, Prozent über letztem Jahr. Beide Verfahren multiplizieren Verkaufsdaten aus einer vorherigen Zeitspanne mit einem vom Benutzer spezifizierten Faktor und projizieren dieses Ergebnis dann in die Zukunft. In der Percent Over Last Year Methode basiert die Projektion auf Daten aus dem gleichen Zeitraum des Vorjahres. Das Flexible-Verfahren fügt die Möglichkeit hinzu, einen Zeitraum anzugeben, der nicht derselbe Zeitraum ist, der als Basis für die Berechnungen verwendet wird. Multiplikationsfaktor. Geben Sie z. B. 1.15 in der Verarbeitungsoption 8b an, um die vorherigen Verkaufsverlaufsdaten um 15. Basisperiode zu erhöhen. Zum Beispiel führt n 3 dazu, dass die erste Prognose im Oktober 2005 auf Verkaufsdaten basiert. Minimale Umsatzhistorie: Die vom Benutzer angegebene Anzahl von Perioden zurück zur Basisperiode plus die Anzahl der Zeitperioden, die für die Bewertung der Prognoseperformance erforderlich sind ( PBF). A.10.4 Mittlere Absolutabweichung MAD (148 - 114 161 - 119 151 - 137) / 3 30 A.11 Methode 9 - Gewichteter gleitender Durchschnitt Die Methode des gewichteten gleitenden Mittels (WMA) ähnelt Methode 4, . Mit dem Weighted Moving Average können Sie jedoch den historischen Daten ungleiche Gewichte zuordnen. Die Methode berechnet einen gewichteten Durchschnitt der letzten Verkaufsgeschichte, um zu einer Projektion für die kurzfristige kommen. Neuere Daten sind in der Regel ein größeres Gewicht als ältere Daten zugeordnet, so dass dies WMA mehr reagiert auf Verschiebungen in der Ebene des Umsatzes. Prognosevorhersage und systematische Fehler treten jedoch immer noch auf, wenn die Produktverkäufe Geschichte starke Trend - oder saisonale Muster aufweisen. Diese Methode ist besser für Kurzstreckenvorhersagen von reifen Produkten besser geeignet als für Produkte in den Wachstums - oder Obsoleszenzphasen des Lebenszyklus. N die Anzahl der Perioden der Verkaufsgeschichte, die in der Prognoserechnung verwendet werden sollen. Geben Sie z. B. n 3 in der Verarbeitungsoption 9a an, um die letzten drei Perioden als Grundlage für die Projektion in die nächste Zeitperiode zu verwenden. Ein großer Wert für n (wie 12) erfordert mehr Umsatz Geschichte. Es resultiert in einer stabilen Prognose, aber es wird nur langsam sein, Veränderungen im Umsatzniveau zu erkennen. Andererseits reagiert ein kleiner Wert für n (wie z. B. 3) schneller auf Verschiebungen des Umsatzniveaus, doch kann die Prognose so weit schwanken, dass die Produktion nicht auf die Variationen reagieren kann. Das Gewicht, das jeder der historischen Datenperioden zugewiesen ist. Die zugeordneten Gewichte müssen insgesamt 1,00 betragen. Zum Beispiel, wenn n 3, Gewichte von 0,6, 0,3 und 0,1 zuweisen, wobei die neuesten Daten das größte Gewicht empfangen. Mindestens erforderlicher Umsatzverlauf: n plus Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance (PBF) erforderlich sind. MAD (133,5 - 114 121,7 - 119 118,7 - 137) / 3 13.5 A.12 Methode 10 - Lineare Glättung Diese Methode ähnelt Methode 9, Weighted Moving Average (WMA). Jedoch wird anstelle der willkürlichen Zuweisung von Gewichten zu den historischen Daten eine Formel verwendet, um Gewichtungen zuzuweisen, die linear abnehmen und auf 1,00 summieren. Das Verfahren berechnet dann einen gewichteten Durchschnitt der letzten Verkaufsgeschichte, um zu einer Projektion für die kurze Zeit zu gelangen. Wie bei allen linearen gleitenden durchschnittlichen Prognosemethoden treten Prognosevorhersage und systematische Fehler auf, wenn die Produktverkaufsgeschichte starke Trend - oder saisonale Muster aufweist. Diese Methode ist besser für Kurzstreckenvorhersagen von reifen Produkten besser geeignet als für Produkte in den Wachstums - oder Obsoleszenzphasen des Lebenszyklus. N die Anzahl der Perioden der Verkaufsgeschichte, die in der Prognoserechnung verwendet werden sollen. Dies ist in der Verarbeitungsoption 10a spezifiziert. Geben Sie beispielsweise n 3 in der Verarbeitungsoption 10b an, um die letzten drei Perioden als Grundlage für die Projektion in die nächste Zeitperiode zu verwenden. Das System vergibt automatisch die Gewichte der historischen Daten, die linear sinken und auf 1,00 sinken. Wenn beispielsweise n & sub3; wird das System Gewichte von 0,5, 0,3333 und 0,1 zuweisen, wobei die neuesten Daten das größte Gewicht empfangen. Mindestens erforderlicher Umsatzverlauf: n plus Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance (PBF) erforderlich sind. A.12.1 Prognoseberechnung Anzahl der Perioden, die in den Glättungsdurchschnitt einzubeziehen sind (Verarbeitungsoption 10a) 3 in diesem Beispiel Verhältnis für eine Periode vor 3 / (n2 n) / 2 3 / (32 3) / 2 3/6 0,5 Verhältnis für zwei Perioden vor 2 / (n2 n) / 2 2 / (32 3) / 2 2/6 0.3333 .. Verhältnis für drei Zeiträume vor 1 / (n2 n) / 2 1 / (32 3) / 2 1/6 0.1666. Januar-Prognose: 137 0,5 119 1/3 114 1/6 127,16 oder 127 Februar-Prognose: 127 0,5 137 1/3 119 1/6 129 März-Prognose: 129 0,5 127 1/3 137 1/6 129,666 oder 130 A.12.2 Simulierte Prognoseberechnung Oktober 2004 Umsatz 129 1/6 140 2/6 131 3/6 133,6666 November 2004 Umsatz 140 1/6 131 2/6 114 3/6 124 Dezember 2004 Umsatz 131 1/6 114 2/6 119 3/6 119,333 A.12.3 Prozentsatz der Genauigkeitsberechnung POA (133,6666 124 119,333) / (114 119 137) 100 101,891 A.12.4 Mittlere Absolutabweichung MAD (133,6666 - 114 124 - 119 119,333 - 137) / 3 14,1111 A.13 Methode 11 - Exponentielle Glättung Diese Methode ist ähnlich wie Methode 10, Lineare Glättung. In der Linearglättung vergibt das System Gewichte an die historischen Daten, die linear abnehmen. Bei exponentieller Glättung weist das System Gewichte auf, die exponentiell zerfallen. Die exponentielle Glättungsvorhersagegleichung lautet: Prognose a (Vorherige Ist-Verkäufe) (1 - a) Vorhergehende Prognose Die Prognose ist ein gewichteter Durchschnitt der tatsächlichen Umsätze der Vorperiode und der Prognose der Vorperiode. A ist das Gewicht auf den tatsächlichen Umsatz für die vorherige Periode angewendet. (1 - a) das auf die Prognose der Vorperiode angewandte Gewicht. Gültige Werte für einen Bereich von 0 bis 1 und üblicherweise zwischen 0,1 und 0,4 liegen. Die Summe der Gewichte beträgt 1,00. A (1 - a) 1 Sie sollten einen Wert für die Glättungskonstante zuweisen, a. Wenn Sie keine Werte für die Glättungskonstante zuordnen, berechnet das System einen angenommenen Wert auf der Grundlage der in der Verarbeitungsoption 11a angegebenen Anzahl von Perioden der Verkaufsgeschichte. Eine Glättungskonstante, die beim Berechnen des geglätteten Durchschnitts für das allgemeine Niveau oder die Grße der Verkäufe verwendet wird. Gültige Werte für einen Bereich von 0 bis 1. n der Bereich der Verkaufsgeschichtsdaten, der in die Berechnungen aufzunehmen ist. Generell reicht ein Jahr der Umsatzverlaufsdaten aus, um das allgemeine Umsatzniveau abzuschätzen. Für dieses Beispiel wurde ein kleiner Wert für n (n 3) gewählt, um die manuellen Berechnungen zur Verifizierung der Ergebnisse zu reduzieren. Eine exponentielle Glättung kann eine Prognose erzeugen, die auf nur einem historischen Datenpunkt basiert. Mindestens erforderlicher Umsatzverlauf: n plus Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance (PBF) erforderlich sind. A.13.1 Prognoseberechnung Die Anzahl der Perioden, die in den Glättungsdurchschnitt (Verarbeitungsoption 11a) 3 und alpha-Faktor (Verarbeitungsoption 11b) einzubeziehen sind, ist in diesem Beispiel ein Faktor für die ältesten Vertriebsdaten 2 / (11) oder 1 bei alpha Einen Faktor für die zweitältesten Verkaufsdaten 2 / (12) oder alpha, wenn alpha einen Faktor für die 3. ältesten Verkaufsdaten 2 / (13) angegeben ist, oder alpha, wenn alpha ein Faktor für die letzten Verkaufsdaten 2 angegeben ist / (1n) oder alpha wenn alpha angegeben ist November Sm. Durchschn. A (Oktober-Ist) (1 - a) Oktober Sm. Durchschn. 1 114 0 0 114 Dezember Sm. Durchschn. A (November-Ist) (1 - a) November Sm. Durchschn. 2/3 119 1/3 114 117.3333 Januar Vorhersage a (Dezember Tatsächlich) (1 - a) Dezember Sm. Durchschn. 2/4 137 2/4 117.3333 127.16665 oder 127 Februar Prognose Januar Prognose 127 März Prognose Januar Prognose 127 A.13.2 Simulierte Prognoseberechnung Juli 2004 Sm. Durchschn. 2/2 129 129 August Sm. Durchschn. 2/3 140 1/3 129 136,333 September Sm. Durchschn. 2/4 131 2/4 136,333 133,6666 Oktober 2004 Verkauf Sep Sm. Durchschn. 133.6666 August 2004. Sm. Durchschn. 2/2 140 140 September Sm. Durchschn. 2/3 131 1/3 140 134 Oktober Sm. Durchschn. 2/4 114 2/4 134 124 November 2004 Verkauf Sep Sm. Durchschn. 124 September 2004 Sm. Durchschn. 2/2 131 131 Oktober Sm. Durchschn. 2/3 114 1/3 131 119,6666 November Sm. Durchschn. 2/4 119 2/4 119,6666 119,333 Dezember 2004 Umsatz Sep Sm. Durchschn. 119,333 A.13.3 Prozent der Genauigkeitsberechnung (133,6666 124 119,333) / (114 119 137) 100 101,891 A.13.4 Mittlere Absolutabweichung MAD (133,6666 - 114 124 - 119 119,333 - 137) / 3 14,1111 A.14 Methode 12 - Exponentielle Glättung mit Trend - und Saisonalität Diese Methode ist ähnlich wie Methode 11, Exponentialglättung, indem ein geglätteter Durchschnitt berechnet wird. Das Verfahren 12 enthält jedoch auch einen Ausdruck in der Prognose-Gleichung, um einen geglätteten Trend zu berechnen. Die Prognose setzt sich aus einem geglätteten Durchschnitt und einem linearen Trend zusammen. Wenn in der Verarbeitungsoption angegeben, wird die Prognose auch saisonbedingt angepasst. Eine Glättungskonstante, die beim Berechnen des geglätteten Durchschnitts für das allgemeine Niveau oder die Grße der Verkäufe verwendet wird. Gültige Werte für den Alpha-Bereich von 0 bis 1. b die Glättungskonstante, die beim Berechnen des geglätteten Durchschnitts für die Trendkomponente der Prognose verwendet wird. Gültige Werte für Beta reichen von 0 bis 1. Ob ein saisonaler Index auf die Prognose a und b angewendet wird, sind unabhängig voneinander. Sie müssen nicht zu 1.0 hinzufügen. Mindestens erforderlicher Umsatzverlauf: zwei Jahre plus Anzahl der für die Bewertung der Prognoseperformance (PBF) erforderlichen Zeiträume. Methode 12 verwendet zwei exponentielle Glättungsgleichungen und einen einfachen Mittelwert, um einen geglätteten Durchschnitt, einen geglätteten Trend und einen einfachen durchschnittlichen saisonalen Faktor zu berechnen. A.14.1 Prognoseberechnung A) Eine exponentiell geglättete durchschnittliche MAD (122.81 - 114 133.14 - 119 135.33 - 137) / 3 8.2 A.15 Auswertung der Prognosen Sie können Prognosemethoden auswählen, um pro Prognose bis zu zwölf Prognosen zu generieren. Jede Prognose-Methode wird wahrscheinlich eine etwas andere Projektion. Wenn Tausende von Produkten prognostiziert werden, ist es unpraktisch, eine subjektive Entscheidung zu treffen, welche der Prognosen in Ihren Plänen für jedes der Produkte verwendet werden. Das System wertet die Leistung automatisch für jede der von Ihnen ausgewählten Prognosemethoden und für jede der Prognoseprognosen aus. Sie können zwischen zwei Leistungskriterien, Mean Absolute Deviation (MAD) und Percent of Accuracy (POA) wählen. MAD ist ein Maß für den Prognosefehler. POA ist ein Maß für die Vorhersage. Beide dieser Leistungsbewertungsverfahren erfordern tatsächliche Verkaufsgeschichtsdaten für eine vom Benutzer angegebene Zeitspanne. Diese Periode der jüngsten Geschichte wird als Halteperiode oder Perioden am besten geeignet (PBF) bezeichnet. Um die Leistung einer Prognosemethode zu messen, verwenden Sie die Prognoseformeln, um eine Prognose für die historische Halteperiode zu simulieren. Normalerweise gibt es Unterschiede zwischen den tatsächlichen Verkaufsdaten und der simulierten Prognose für die Halteperiode. Wenn mehrere Prognosemethoden ausgewählt werden, erfolgt dieser Prozess für jede Methode. Mehrere Prognosen werden für die Halteperiode berechnet und mit dem bekannten Umsatzverlauf für denselben Zeitraum verglichen. Für die Verwendung in Ihren Plänen wird die Prognosemethode empfohlen, die die optimale Übereinstimmung zwischen der Prognose und dem tatsächlichen Umsatz während des Haltezeitraums liefert. Diese Empfehlung ist spezifisch für jedes Produkt und kann sich von einer Prognosegeneration zur nächsten ändern. A.16 Mittlere Absolutabweichung (MAD) MAD ist der Mittelwert (oder Mittelwert) der Absolutwerte (oder Größen) der Abweichungen (oder Fehler) zwischen Ist - und Prognosedaten. MAD ist ein Maß für die durchschnittliche Größe der zu erwartenden Fehler bei einer Prognosemethode und einem Datenverlauf. Da bei der Berechnung absolute Werte verwendet werden, werden positive Fehler nicht negativ ausgewertet. Beim Vergleich mehrerer Prognosemethoden hat sich diejenige mit dem kleinsten MAD als die zuverlässigste für dieses Produkt für diese Halteperiode erwiesen. Wenn die Prognose unvoreingenommen ist und Fehler normal verteilt sind, gibt es eine einfache mathematische Beziehung zwischen MAD und zwei anderen gemeinsamen Maßeinheiten für Verteilung, Standardabweichung und Mean Squared Error: A.16.1 Prozent der Genauigkeit (POA) Prozent der Genauigkeit (POA) Ein Maß für die Vorhersage Bias. Wenn die Prognosen konsequent zu hoch sind, sammeln sich die Vorräte an und die Lagerhaltungskosten steigen. Wenn die Prognosen konsequent zwei niedrig sind, werden die Vorräte verbraucht und der Kundendienst sinkt. Eine Prognose, die 10 Einheiten zu niedrig ist, dann 8 Einheiten zu hoch, dann 2 Einheiten zu hoch, wäre eine unvoreingenommene Prognose. Der positive Fehler von 10 wird durch negative Fehler von 8 und 2 gelöscht. Fehler Tatsächlich - Prognose Wenn ein Produkt im Inventar gespeichert werden kann und wenn die Prognose nicht vorliegt, kann eine kleine Menge an Sicherheitsbestand verwendet werden, um die Fehler zu puffern. In dieser Situation ist es nicht so wichtig, Prognosefehler zu eliminieren, da es sich um die Erzeugung von unvorhersehbaren Prognosen handelt. In der Dienstleistungsbranche wäre die obige Situation jedoch als drei Fehler zu betrachten. Der Dienst würde in der ersten Periode unterbesetzt sein, dann überbesetzt für die nächsten zwei Perioden. In Services ist die Größenordnung der Prognosefehler in der Regel wichtiger als die prognostizierte Bias. Die Summierung über die Halteperiode erlaubt positive Fehler, negative Fehler abzubrechen. Wenn die Summe der tatsächlichen Verkäufe die Summe der prognostizierten Verkäufe übersteigt, ist das Verhältnis größer als 100. Natürlich ist es unmöglich, mehr als 100 genau zu sein. Wenn eine Prognose nicht vorliegt, beträgt das POA-Verhältnis 100. Daher ist es wünschenswerter, genauer als 100 genau zu sein, als 110 genau zu sein. Die POA-Kriterien wählen die Prognosemethode, die ein POA-Verhältnis am nächsten zu 100 hat. Das Scripting auf dieser Seite verbessert die Inhaltsnavigation, ändert jedoch den Inhalt in keiner Weise. Avis Budget Group, Inc. verletzte seinen 50 Tage gleitenden Durchschnitt in einem Bullish Manner . CAR-US. 16. Dezember 2016 Aktienkursentwicklung im Vergleich zu Peers Die relative Outperformance gegenüber den Vorjahren steht im Vergleich zu den jüngeren Underperformances. CAR-US 8216s Veränderung des Aktienkurses von 10,14 für die letzten 12 Monate ist besser als sein Peer-Median. Allerdings ist die 30-Tage-Trend in seiner Aktienkurs-Performance von -7,05 unter dem Peer-Median, was darauf hindeutet, dass die company8217s jüngsten Leistung verblasst deutlich im Vergleich zu Peers. Quadrantenbeschriftungen. Hover to know more Führende, Fading, Lagging, Rising Screen für Unternehmen mit relativer Aktienkurs-Performance Ertragsdynamik Avis Budget Group, Inc. hat einen Ergebniswert von 71,28 und hat eine relative Bewertung von UNDERVALUED. Aktien mit hohem Ertrag Momentum sind eine bevorzugte Option für Impulsspiele. Wenn sie unterbewertet sind, kann dies ein weiterer Vorteil sein und auf eine anhaltende Dynamik hindeuten. Quadrantenbeschriftungen. Hover, um mehr zu wissen Überbewertet, High Earnings Momentum, Undervalued, High Earnings Momentum, UnderValued, Low Earnings Momentum, Überbewertet, Low Earnings Momentum Bildschirm für Unternehmen mit Earnings Momentum Score

No comments:

Post a Comment